Spring Sale Limited Time 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code = simple70

Pass the Databricks Generative AI Engineer Databricks-Generative-AI-Engineer-Associate Questions and answers with Dumpstech

Exam Databricks-Generative-AI-Engineer-Associate Premium Access

View all detail and faqs for the Databricks-Generative-AI-Engineer-Associate exam

Practice at least 50% of the questions to maximize your chances of passing.
Viewing page 1 out of 3 pages
Viewing questions 1-10 out of questions
Questions # 1:

After changing the response generating LLM in a RAG pipeline from GPT-4 to a model with a shorter context length that the company self-hosts, the Generative AI Engineer is getting the following error:

Question # 1

What TWO solutions should the Generative AI Engineer implement without changing the response generating model? (Choose two.)

Options:

A.

Use a smaller embedding model to generate

B.

Reduce the maximum output tokens of the new model

C.

Decrease the chunk size of embedded documents

D.

Reduce the number of records retrieved from the vector database

E.

Retrain the response generating model using ALiBi

Questions # 2:

A Generative Al Engineer is setting up a Databricks Vector Search that will lookup news articles by topic within 10 days of the date specified An example query might be "Tell me about monster truck news around January 5th 1992". They want to do this with the least amount of effort.

How can they set up their Vector Search index to support this use case?

Options:

A.

Split articles by 10 day blocks and return the block closest to the query.

B.

Include metadata columns for article date and topic to support metadata filtering.

C.

pass the query directly to the vector search index and return the best articles.

D.

Create separate indexes by topic and add a classifier model to appropriately pick the best index.

Questions # 3:

All of the following are Python APIs used to query Databricks foundation models. When running in an interactive notebook, which of the following libraries does not automatically use the current session credentials?

Options:

A.

OpenAI client

B.

REST API via requests library

C.

MLflow Deployments SDK

D.

Databricks Python SDK

Questions # 4:

A Generative Al Engineer is creating an LLM-based application. The documents for its retriever have been chunked to a maximum of 512 tokens each. The Generative Al Engineer knows that cost and latency are more important than quality for this application. They have several context length levels to choose from.

Which will fulfill their need?

Options:

A.

context length 514; smallest model is 0.44GB and embedding dimension 768

B.

context length 2048: smallest model is 11GB and embedding dimension 2560

C.

context length 32768: smallest model is 14GB and embedding dimension 4096

D.

context length 512: smallest model is 0.13GB and embedding dimension 384

Questions # 5:

A Generative Al Engineer is building a system which will answer questions on latest stock news articles.

Which will NOT help with ensuring the outputs are relevant to financial news?

Options:

A.

Implement a comprehensive guardrail framework that includes policies for content filters tailored to the finance sector.

B.

Increase the compute to improve processing speed of questions to allow greater relevancy analysis

C Implement a profanity filter to screen out offensive language

C.

Incorporate manual reviews to correct any problematic outputs prior to sending to the users

Questions # 6:

Which TWO chain components are required for building a basic LLM-enabled chat application that includes conversational capabilities, knowledge retrieval, and contextual memory?

Options:

A.

(Q)

B.

Vector Stores

C.

Conversation Buffer Memory

D.

External tools

E.

Chat loaders

F.

React Components

Questions # 7:

An AI developer team wants to fine-tune an open-weight model to have exceptional performance on a code generation use case. They are trying to choose the best model to start with. They want to minimize model hosting costs and are using Hugging Face model cards and spaces to explore models. Which TWO model attributes and metrics should the team focus on to make their selection?

Options:

A.

Big Code Models Leaderboard

B.

Number of model parameters

C.

MTEB Leaderboard

D.

Chatbot Arena Leaderboard

E.

Number of model downloads last month

Questions # 8:

A Generative AI Engineer just deployed an LLM application at a digital marketing company that assists with answering customer service inquiries.

Which metric should they monitor for their customer service LLM application in production?

Options:

A.

Number of customer inquiries processed per unit of time

B.

Energy usage per query

C.

Final perplexity scores for the training of the model

D.

HuggingFace Leaderboard values for the base LLM

Questions # 9:

A Generative Al Engineer has already trained an LLM on Databricks and it is now ready to be deployed.

Which of the following steps correctly outlines the easiest process for deploying a model on Databricks?

Options:

A.

Log the model as a pickle object, upload the object to Unity Catalog Volume, register it to Unity Catalog using MLflow, and start a serving endpoint

B.

Log the model using MLflow during training, directly register the model to Unity Catalog using the MLflow API, and start a serving endpoint

C.

Save the model along with its dependencies in a local directory, build the Docker image, and run the Docker container

D.

Wrap the LLM’s prediction function into a Flask application and serve using Gunicorn

Questions # 10:

A Generative Al Engineer is building a RAG application that answers questions about internal documents for the company SnoPen AI.

The source documents may contain a significant amount of irrelevant content, such as advertisements, sports news, or entertainment news, or content about other companies.

Which approach is advisable when building a RAG application to achieve this goal of filtering irrelevant information?

Options:

A.

Keep all articles because the RAG application needs to understand non-company content to avoid answering questions about them.

B.

Include in the system prompt that any information it sees will be about SnoPenAI, even if no data filtering is performed.

C.

Include in the system prompt that the application is not supposed to answer any questions unrelated to SnoPen Al.

D.

Consolidate all SnoPen AI related documents into a single chunk in the vector database.

Viewing page 1 out of 3 pages
Viewing questions 1-10 out of questions